A Materiomics Approach to Spider Silk: Protein Molecules to Webs

نویسندگان

  • ANNA TARAKANOVA
  • MARKUS J. BUEHLER
چکیده

The exceptional mechanical properties of hierarchical self-assembling silk biopolymers have been extensively studied experimentally and in computational investigations. A series of recent studies has been conducted to examine structure–function relationships across different length scales in silk, ranging from atomistic models of protein constituents to the spider web architecture. Silk is an exemplary natural material because its superior properties stem intrinsically from the synergistic cooperativity of hierarchically organized components, rather than from the superior properties of the building blocks themselves. It is composed of beta-sheet nanocrystals interspersed within less orderly amorphous domains, where the underlying molecular structure is dominated by weak hydrogen bonding. Protein chains are organized into fibrils, which pack together to form threads of a spider web. In this article we survey multiscale studies spanning length scales from angstroms to centimeters, from the amino acid sequence defining silk components to an atomistically derived spider web model, with the aim to bridge varying levels of hierarchy to elucidate the mechanisms by which structure at each composite level contributes to organization and material phenomena at subsequent levels. The work demonstrates that the web is a highly adapted system where both material and hierarchical structure across all length scales is critical for its functional properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular nanosprings in spider capture-silk threads.

Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads ...

متن کامل

Materiomics: biological protein materials, from nano to macro.

Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in t...

متن کامل

Reconstructing web evolution and spider diversification in the molecular era.

The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and...

متن کامل

Behavioural and biomaterial coevolution in spider orb webs.

Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials--silks--are arranged in a complex design resulting from stereotypical behavioural patt...

متن کامل

Spider ' s Orb Web : Implications of Structural Hierarchies to Materials - based Evolution by Anna

Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Its structural component, the silk protein, is an exemplary natural material because its superior properties stem intrinsically from the synergistic cooperativity of hierarchically-organized components, rather than from the particular properties of the building blocks th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012